
Automating processing with 
workflow environments

Ewa Deelman

Center for Grid Technologies

USC Information Sciences Institute



Workflow

Complex applications can be viewed as workflows
– Workflow activities (nodes) represent application 

components

– Workflow dependencies represent the interactions 
between the components

A workflow can be viewed as a recipe of how to 
produce a given dataset

An executed workflow can carry with it provenance 
information for the dataset: what application 
components and resources were used
– The workflow can include preservation processes 

that are applied to each digital record.



Scientific “Workflows” vs 
Business Workflows

Business Workflows (BPEL4WS* …)
– Task-orientation: travel reservations; credit approval; 

BPM; …
– Tasks, documents, etc. undergo modifications (e.g., flight 

reservation from reserved to ticketed), but modified WF 
objects still identifiable throughout

– Complex control flow, complex process composition 
(danger of control flow/dataflow “spaghetti”)
Dataflow and control-flow are often separated

Scientific “Workflows”
– Dataflow and data transformations
– Data problems: volume, complexity, heterogeneity 
– Grid-aspects

> Distributed computation 
> Distributed data

– User-interactions/WF steering
– Data, tool, and analysis integration

Dataflow and control-flow are often integrated
*Business Process Execution Language for Web Services (in case you wondered)



Scientific “Workflows”: 
Some Findings

More dataflow than (business control-/) workflow
– DiscoveryNet, Kepler, SCIRun, Scitegic, Triana, Taverna, 

…, 
Need for “programming extensions”
– Iterations over lists (foreach); filtering; functional 

composition; generic & higher-order operations (zip, 
map(f), …)

Need for abstraction and nested workflows
Need for data transformations (WS1 DT WS2)
Need for rich user interaction & workflow steering:
– pause / revise / resume
– select & branch; e.g., web browser capability at specific 

steps as part of a coordinated SWF
Need for high-throughput data transfers and CPU cyles: 
“(Data-)Grid-enabling”, “streaming”
Need for persistence of intermediate products and
provenance



Relationship between virtual data, 
and provenance

Virtual data can be described by a workflow, that undergoes 
an refinement process to obtain a workflow in the “done” state 

The refinement process can generate provenance information 
that describes how the workflow was executed

refiner

Wkfl step

Annotationrefiner

refiner

Provenance
(annotated workflow)

Virtual data
(workflow steps)

Virtual data materialization
Annotations can be used to describe the state of the workflow, or provide additional 
provenance information



GriPhyN Software to support 
workflow evolution

Workflow Generation: how do you describe 
the workflow (at various levels of 
abstraction)? (Chimera)
Workflow Mapping/Refinement: how do you 
map an abstract workflow representation to 
an executable form? (Pegasus)
Workflow Execution: how do you reliably 
execute the workflow? (Condor’s DAGMan)
Workflow Provenance: how do you record 
all information about the newly created 
data? (Chimera)



Chimera’s VDL: Virtual Data Language
Describes Data Transformations

Transformation
– Abstract template of program invocation
– Similar to "function definition"

Derivation
– “Function call” to a Transformation
– Store past and future:

> A record of how data products were generated
> A recipe of how data products can be generated

Invocation
– Record of a Derivation execution

Developed at ANL and UofC



Pegasus:
Planning for Execution in Grids

Maps from abstract to concrete workflow
– Algorithmic and AI-based techniques

Shields from the Grid details
Finds appropriate resources to execute
Reuses existing data products where applicable
Publishes newly derived data products
– Chimera virtual data catalog
– Provides provenance information

Can run the workflow on a variety of resources and across 
computing platforms
Can opportunistically take advantage of available resources 
(through dynamic workflow mapping) 
Developed at ISI



Condor’s DAGMan

Developed at UW Madison (Livny)

Executes a concrete workflow

Makes sure the dependencies are followed

Executes the jobs specified in the workflow
– Execution

– Data movement

– Catalog updates

Provides a “rescue DAG” in case of failure



For more information

GriPhyN project www.griphyn.org

Chimera www.griphyn.org/chimera

Pegasus pegasus.isi.edu



Additional slides



Workflow Evolution

Workflow description
– Provenance metadata
– Partial, abstract description of the workflow 

segments
– Full, abstract description of the entire workflow
– A concrete, executable workflow that defines which 

compute resources are used
Workflow refinement
– Take a description and produce an executable 

workflow
Workflow execution
– Process the steps of the workflow on the grid



Benefits of the workflow approach
The workflow exposes 
– the structure of the application

– maximum parallelism of the application

Workflow refiners shield users from execution environment 
details

Workflow refiners can take advantage of the structure to
– Set a planning horizon (how far into the workflow to plan)

– Cluster a set of workflow nodes to be executed as one (in case 
the nodes has a small computational granularity)

Workflow refiners can improve the performance of the 
application by customizing the mapping to particular 
resources (Teragrid vs condor pools)

Workflow refiners and executors can record all the execution 
steps and thus provide provenance information necessary to 
evaluate the quality of the data



Workflow Refinement

The workflow can undergo an arbitrarily 
complex set of refinements

A refiner can modify part of the workflow 
or the entire workflow

A refiner uses a set of Grid information 
services and catalogs to perform the 
refinement (metadata catalog, virtual data 
catalog, replica location services, 
monitoring and discovery services, etc. )



time

Levels of
abstraction

Application
-level

knowledge

Logical
tasks

Tasks
bound to
resources

and sent for
execution

User’s
Request

Relevant
components

Full
abstract
workflow

Partial
execution

Not yet
executed executed

Workflow 
refinement

Task
matchmaker

Policy
info

Workflow 
repair

Workflow Refinement and execution


